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A nonlinear theory is presented for the formation of hexagonal optical structures in a
photorefractive medium equipped with a feedback mirror. Oppositely directed beams in
photorefractive crystals are unstable against the excitation of sideband waves. It is shown here that
as this instability evolves to its nonlinear stage, the three-wave interaction between weak
sideband beams does not stabilize it, but rather leads to explosive growth of the amplitudes of
beams whose transverse wave vectors form angles that are multiples ofp/3. As a result,
sideband beams at these angles are found to be correlated. A range of parameters is found in which
four-wave interactions saturate the explosive instability, which explains the appearance of
stable hexagons in the experiment. Outside this region, nonlinearities of higher order saturate the
explosive instability, and the process of hexagon generation must be studied numerically.
Matrix elements are obtained for the three- and four-wave interactions as functions of the distance
to the feedback mirror, and an equation for the time evolution of the sideband wave
amplitudes is derived that describes the hexagon generation. A comparison is made with
experimental results for the photorefractive crystals KNbO3 and BaTiO3. © 1998 American
Institute of Physics.@S1063-7761~98!02903-5#
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1. INTRODUCTION

Oppositely directed optical beams passing through n
linear media often exhibit transverse instability against
excitation of waves at small angles to the primary propa
tion direction and the generation of transverse hexag
shaped optical structures.1–5 This instability is caused by
positive feedback between the counterpropagating bea
and is absolute in nature. In photorefractive crystals s
phenomena have been especially well-studied,6–9 due to the
extreme ease with which the evolution of the transverse
stability and formation of regular structures can be observ
Characteristic times for the creation of these structures ra
from tenths to tens of seconds. Typical nonlinear leng
within these crystals, over which the amplitude of the lig
beams changes appreciably, are several millimeters, and
intensities of the pump beams required to generate them
achievable using cw lasers.10

Until recently, theoretical studies of the transverse ins
bility concentrated mostly on calculating threshold con
tions for the generation of transverse optical structures. T
was first done for Kerr media,11 followed by threshold cal-
culations for the photorefractive crystals KNbO3 and BaTiO3

equipped with feedback mirrors,12 and the crystals LiNbO3
and LiTaO3 illuminated by oppositely directed pump beam
but with no feedback mirror.13 The crystals KNbO3 and
BaTiO3 are the best ones to study from an experimental p
of view. When these crystals are equipped with feedb
mirrors, it is found that stationary hexagonal structures fo
with an instability threshold that is in rather good agreem
with theoretical predictions.6,8,12In Ref. 12, Honda and Ban
erjee found the threshold by assuming that the instability w
aperiodic, i.e., the imaginary part of the instability grow
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rate equaled zero at the threshold of the instability~if this
were not the case, moving optical structures would be se
Experimentally, such a motion can only be produced by m
matching the directions of the oppositely directed bea
slightly!. In other words, the frequency detuning betwe
pump and sideband waves is assumed to be zero at th
stability threshold.

Above threshold, the instability leads to generation
weak optical beams at small anglesu5uk'u/k0 to the pump
beams, wherek0 is the wave vector of the pump beams a
uk'u is the transverse component of the excitation beam w
vector. For pumping slightly above threshold, the on
beams generated had wave vectors in a narrow layer aro
uk'u.k0' , where the instability growth rate is a maximu
~herek0' is the value of the transverse wave vector cor
sponding to maximum gain!. Thus, the initial stage of the
evolution of the instability involves the creation of annul
structures~in the plane perpendicular to the pump bea!
with amplitudes that decay exponentially with time. The d
tribution of intensity along the beam at this stage is arbitr
and is determined by fluctuations in the medium. This the
is linear in the amplitudes of the weak beams, and there
cannot describe the subsequent evolution of the instab
which leads to the formation of regular hexagonal opti
structures. These structures arise from nonlinear interact
between the weak optical beams. The task of this paper
derive a theory of this interaction for photorefractive KNbO3

and BaTiO3 crystals equipped with a feedback mirror. Th
small parameter used in the theory is the amplitude of
sideband waves normalized by the square root of the in
sity of the pump beams. Since the instability is aperiod
three-wave interactions between optical beams whose tr
verse wave vectors make angles with each other that
© 1998 American Institute of Physics
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multiples ofp/3 become important as the instability evolv
toward its nonlinear stage. It is shown here that this inter
tion does not stabilize the instability, but rather leads to
plosive growth in the amplitudes of the weak sideba
waves, as a result of which hexagonal structures form. T
can be understood from the following example. Let us
sume that as a result of the evolution of the linear instabi
three weak beams are excited with wave vectorsqj

5(k0 ,k' j ), j 51, 2, 3, equal real amplitudesA, and trans-
verse wave vectorsk' j that make angles ofp/3 with each
other. The linear instability theory of Ref. 12 implies th
three other beams with the transverse wave vector2k' j will
also be excited in the system at the same time, and six be
with 2k0 : q5(2k0 ,6k'1,2,3). The amplitudes of these
waves all equalA.

It will be show below that the evolution ofA(t) is de-
termined by the following equation:

]A

]t
5n0A1UA2, ~1!

wheren05nk0'
is the instability growth rate at its maximum

point uk'u5k0' and U is the matrix element for the three
wave interaction. SettingAu t505A0 and integrating this
equation gives

A5
A0n0

~n01UA0!e2n0t2UA0
, ~2!

This expression reveals that there exists a timetcr.0 at
which the amplitudeA goes to infinity when the condition
A0U.0 holds. This is an example of a so-called explos
instability, for which the solution becomes singular at a fin
time. Thus, a fundamental feature of this problem is t
three-wave processes lead to correlations between pertu
tions whose transverse wave vectorsk' make angles with
one another that are multiples ofp/3. These correlated per
turbations generate hexagons in the plane of transverse w
vectorsk'. In this case there is no correlation between d
ferent hexagons, and the interaction between them is sm
Four-wave and higher-order wave processes stabilize the
stability, and also suppress the generation of other hexag
with smaller amplitudes~i.e., those hexagons which begin
grow after the primary one!. Thus, hard excitation of hexa
gons takes place until amplitudes are reached at which
excitation is stabilized by nonlinearities of fourth and high
order. This hard excitation of hexagons is the analog o
first-order phase transition.

A more general equation, which describes the evolut
of weak beamsAk with transverse wave vectork, will be
derived below~here and below the sign' will be omitted!,
taking into account three- and four-wave interactions:

]Ak

]t
5n0Ak1

1

2
U (

k11k25k
Ak1

Ak2

2
1

3! (
k11k21k35k

T2k k1k2k3
Ak1

Ak2
Ak3

, ~3!

whereU, T2kk1k2k3
are the matrix elements of the three- a

four-wave processes evaluated on the surfaceuku5k0' .
c-
-

d
is
-

y

ms

e

t
ba-

ve
-
ll.

in-
ns

he
r
a

n

Since linear instability theory predicts the growth of pertu
bations within the thin ringuku.k0' , in summing in Eq.~3!
it is sufficient to retain only those transverse wave vect
whose magnitude corresponds to the maximum linear gro
rate, i.e.,uku5k0' . Thus, Eq.~3! is essentially a Laudau
expansion in the amplitudeAk of the growing linear modes
~see, e.g., Ref. 14!.

Note that the applicability of Eq.~3!, i.e., the possibility
of limiting the treatment to three- and four-wave process
assumes that the nonlinearity is small. For this to be true
general, the matrix elementU is required to be small inde
pendent of how far above threshold the system is. In
theory of phase transitions this corresponds to a first-or
phase transition that is close to a second-order phase tr
tion by virtue of the smallness of the order parameter disc
tinuity. In photorefractive crystals, the matrix elementU is
not particularly small; however, the matrix elementT2kk1k2k3

contains a rather large numerical factor which justifies
existence of a range where Eq.~3! is applicable whenever the
total contribution of four-wave processes can provide b
saturation of the explosive instability and stability of the s
tionary hexagonal lattices. In what follows, a range of p
rameters will be found in which such saturation and stabi
are actually achieved, and the results of analytic four-wa
theory will be compared with a numerical experiment th
takes into account wave processes of higher order. As a
sult, it will be shown that the analytic theory describes t
process of hexagon generation in a qualitatively correct m
ner, but that the stationary amplitudes it predicts differ
roughly a factor of 2 from those obtained by the numeri
experiment. Thus, higher-order wave processes lead to
important renormalization of the hexagon amplitudes. T
numerical calculations also show that when a range of
rameters is deliberately chosen for which four-wave the
cannot saturate the explosive instability, the hexagons
stabilized at larger amplitudes, i.e., for stronger nonlinear

The plan of this paper is as follows: in Sec. 2 nonline
equations are derived that describe the evolution of sideb
beams in photorefractive media with a feedback mirror, a
a general boundary value problem is formulated for solv
these equations. In Sec. 3 the linear theory of transverse
stability is investigated by linearizing this boundary val
problem. As a result, the threshold condition is found for t
instability, along with eigenvectors for the direct an
Hermitian-conjugate linear boundary value problems. In S
4 expressions are obtained for the matrix elementU of the
three-wave interaction. The fact that this matrix element w
turn out to be nonzero is of fundamental importance. In S
5 the overall amplitude equation~3! is derived, along with an
expression for the four-wave interaction matrix eleme
T2kk1k2k3

. For photorefractive crystals like KNbO3 and

BaTiO3, the matrix elementsU andT2kk1k2k3
turn out to be

purely real. In Sec. 6 an equation is found that describes
time evolution of the hexagon intensity, and the hexag
stability is investigated. This analysis makes it possible
determine the range of parameters in which the four-w
interaction is sufficient to stabilize the growth of the hex
gons. In Sec. 7 the generation of hexagons is investiga
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numerically, taking into account higher-order nonlineariti
and the theoretical results are compared with experime
results for the photorefractive crystals KNbO3 and BaTiO3.
In the last section, all of these results are summarized.

2. FUNDAMENTAL EQUATIONS

Assume that a pump light waveF0 exp@i(n0k0z2v0t)#
propagates along thez axis in a photorefractive crystal alon
with an oppositely directed waveB0 exp@2i(n0k0z2v0t)#
arising from reflection by a feedback mirror. HereF0(z),
B0(z) are complex wave amplitudes that vary slowly withz,
k0 is the wave vector of the light waves in vacuum,v0 is
their frequency, andn0 is the index of refraction of the crys
tal. For simplicity we will refer to both waves as pum
waves. We denote the distance between the back face o
crystal and the feedback mirror byL and the length of the
crystal along thez axis by l , and set the coordinate of th
front face of the crystalz50 ~see also the experiment setu
in Refs. 8 and 12!. Consider perturbations of the pum
beams in the form of weak sideband waves, and write
total amplitudes of the beams in the form

F exp@ i ~n0k0z2v0t !#5F0 exp@ i ~n0k0z2v0t !#

3F11(
k

exp~ ik–r'!Fk~z,t !G ,
~4!

B exp@2 i ~n0k0z2v0t !#5B0 exp@2 i ~n0k0z2v0t !#

3F11(
k

exp~ ik–r'!Bk~z,t !G ,
where k5(kx ,ky) is the transverse wave vector in thexy
plane,r' is the spatial coordinate in this plane, andFk , Bk

are amplitudes of the sideband waves normalized by the
plitudes of the pump waves. Assume that the polarization
all the waves are the same, the amplitudes of the sideb
waves are small, i.e.,uFku, uBku!1, and thatuku!n0k0 , i.e.,
the sideband waves propagate at small angles to the p
beams.

The wave beams in the photorefractive medium inter
via the following mechanism. Under the action of the lig
current carriers are excited and the crystal acquires a ph
conductivity. The modulation of the light intensity caused
interference of the light beams leads to modulation of
photoconductivity and the appearance of a space-ch
electric field. Modulation of this space-charge fieldE in turn
leads to modulation of the dielectric constant of the crys
e5e01de according to the linear electrooptic effec
de52n0

4rE, wheren0 is the index of refraction of the crys
tal andr is the effective electrooptic coefficient.10,15 In par-
ticular, if the z axis coincides with the crystallographicz
axis, then r 5r 13. Note that only the longitudina
z-componentE[Ez of the space-charge field is included
the analysis that follows, since the other components g
rise to negligibly small contributions. Thus, the interacti
between the light beams arises from their diffraction by
refractive index modulations they induce in the crystal.10,15

In this paper we will assume that the wave interaction
mediated only by generation of reflecting refractive ind
,
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gratings, whose wave vectors are close to62n0k0 . Under
the conditions of the experiment in which the hexagons w
seen, interaction via transmission gratings is negligi
small.8,12 Therefore, the space-charge fieldE(r' ,z,t) can be
written in the form

E~r' ,z,t !5exp~2in0k0z!E2k0

3S 11(
k

exp~ ik–r'!E2k0 ,kD
1exp~22in0k0z!E22k0

3S 11(
k

exp~ ik–r'!E22k0 ,kD , ~5!

whereE62k0
(z) are the space-charge field amplitudes aris

from the pump beams andE62k0 ,k(z,t) are the space-charg
field amplitudes of the sideband beams normalized by
pump-beam field amplitudes. These amplitudes are wri
by the pump and sideband waves, and also by pairs of w
sideband waves. The reality of the quantityE(r' ,z,t) leads
to the following relations between these amplitudes:

E22k0
5E2k0

* , E22k0 ,2k5E2k0 ,k* .

The wave amplitudesF andB vary with time on a scale
that is the same order as the characteristic relaxation tim
the space-charge fieldE, which in photorefractive crystals
can range from tenths of seconds to tens of seconds;10 there-
fore, this dependence can be neglected in the w
equation.10,15 The equations for the amplitudesF and B,
which are slowly varying inz, take the following form in
light of Eq. ~5!:

S d

dz
2

i

2k0n0
D'DF52

ik0n0
3r

2
BE2k0

3S 11(
k

eik–r'E2k0 ,kD ,

~6!

S d

dz
1

i

2k0n0
D'DB5

ik0n0
3r

2
FE22k0

3S 11(
k

eik–r'E22k0 ,kD ,

whereD'5]2/]x21]2/]y2.
When the amplitudes of the sideband waves can be

glected, the following expressions for the pump beams
low from Eqs.~6! and ~4!:

d

dz
F052

ik0n0
3r

2
B0E2k0

,
~7!

d

dz
B05

ik0n0
3r

2
F0E22k0

.

Equations~6!, ~7! must be supplemented by a relatio
between the space-charge fieldE and the wave amplitudes
As shown above, the photorefractive nonlinearity is e
tremely slow; therefore, the generation of the space-cha
field turns out to be affected only by the total intensity of t
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optical beams averaged over the rapid oscillations with
quencyv0 , i.e., the standing-wave optical patterns form
by interference between the oppositely directed beams.
us write the light intensityI averaged over the rapid tempor
oscillations in the form

I 5I S@ I 01exp~2in0k0z!I 2k0
1exp~22in0k0z!I 22k0

#,
~8!

where

I 05
1

I S
H uF0u2F11(

k
eik–r'~Fk1F2k* !

1 (
k1 ,k2

ei ~k11k2!•r'Fk1
F2k2

* G1uB0u2S 11(
k

eik–r'~Bk

1B2k* !1 (
k1 ,k2

ei ~k11k2!•r'Bk1
B2k2

* D J ,

~9!

I 2k0
5

F0B0*

I S
F11(

k
eik–r'~Fk1B2k* !

1 (
k1 ,k2

ei ~k11k2!•r'Fk1
B2k2

* G ,
here I 22k0

5I 2k0
* , and I S5uF0u21uB0u2 is the sum of the

pump beam intensities.
Assume that the photorefractive crystal contains a se

donor and acceptor levels with densitiesND and NA , and
densities of ionized donors and conduction-band electr
ND

1 and n respectively.16 The compensating acceptor leve
are completely occupied by electrons and do not particip
in any transitions, andND.NA . Let us neglect thermal tran
sitions of electrons from donor levels into the conducti
band. Then the acceptor charge2eNA entirely compensate
the charge due to ionized donors in the dark. Assume
phototransitions take electrons from donor levels to the c
duction band with a probabilitysI(ND2ND

1), and that elec-
trons are trapped by ionized donors with a probabi
g0ND

1n, wheres is the photoionization cross section andg0

is the recombination coefficient. Then the density of ioniz
donors is given by the equation

]ND
1

]t
5sI~ND2ND

1!2g0ND
1n, ~10!

which must be supplemented by the Poisson equation

div E54p
e

e i
~ND

12NA2n! ~11!

and the equation of continuity

]~ND
12n!

]t
1

1

e
div j 50, ~12!

Heree i is the static dielectric constant along thez axis. Note
that it is sufficient to take into account only the longitudin
dielectric constant, since only small-angle perturbationsuku
!n0k0 are treated in this paper. This in turn implies that it
sufficient to take into account only the longitudinal comp
-

et

of
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nent E5Ez of the space-charge field. The electric curre
density j is determined by drift and diffusion of electrons:

j 5emnE1eD¹n, ~13!

wherem is the carrier mobility,D5mkBT/e is the diffusion
coefficient,T is the temperature, andkB is the Boltzmann
constant. In the majority of experiments on excitation
hexagons in photorefractive crystals, conditions are such
ND , ND

1 , NA , uND2NAu@n;10 furthermore, the characteris
tic recombination time 1/g0NA for carriers~electrons! is con-
siderably smaller than the characteristic relaxation timetd

5e ig0NA/4pemsIS(ND2NA) for the space-charge field
Therefore, the time derivative in Eq.~10! can be neglected
andn can be expressed as a function of the light intensity
follows:

n5
sI~ND2NA!

g0NA
. ~14!

From Eqs.~11!–~14! we obtain an equation for the spac
charge field:13,15

I Std

]E

]t
52IẼ2EscĨ , ~15!

where the tilde instructs us to separate out the spatially
cillating parts with wave vectors62n0k0 . Here Esc

52in0k0D/m is a characteristic photoinduced electric fie
that depends only on the properties of the crystal,15,17 and is
caused by diffusion of photoelectrons. If the conductivity
the crystal is predominantly due to holes, we need o
change the coefficients that multiplytd andEsc .10

Equations~15!, ~8!, ~9! imply the following expression
for the amplitudeE62k0

of the reflecting grating created b
the space-charge field generated by the pump beams:

E2k0
52Esc

F0B0*

I S
, E22k0

5E2k0
* . ~16!

The theory presented above is entirely suitable for tre
ing the crystals KNbO3 and BaTiO3 under investigation in
this paper. This is because diffusion of photoelectrons do
nates in these crystals, and according to Eq.~16! the spatial
modulation of the refractive index is shifted byp/2 relative
to the modulation of the standing optical pattern, which c
responds to the so-called nonlocal photorefract
response.10,17 Note that inclusion of either an applied exte
nal electric field or the photogalvanic effect leaves the fo
of Eq. ~15! unchanged, only changing the constantEsc .15,17

In particular, the quantityEsc is almost real in the crystals
LiNbO3 and LiTaO3; therefore, there is no phase shift, whic
corresponds to the local response caused by drift of elect
in an external field or by the photogalvanic effect.13,15There-
fore, in the interest of greater generality it is assumed be
that Esc is an arbitrary complex constant.

Let us assume that the feedback mirror has unit refl
tion coefficient,R51, and that the reflection of the ligh
beam from the crystal face is negligibly small. Then we o
tain from Eqs.~7! and ~16!

F0~z!5F0~0!eigz/2, B0~z!5B0~0!e2 ig* z/2,
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uF0~z!u25uB0~z!u25uF0~0!u2e2g i z, ~17!

whereg[g r1 ig i5k0n0
3rEsc/2 is the coupling constant o

the photorefractive crystal, which can easily be obtain
from experiment by using Eqs.~17!. Then thez-dependence
of the characteristic relaxation time for the space-charge fi
has the form

td~z!5td~0!eg i z. ~18!

Equations~4!, ~6!, ~8!, ~9!, and~15!–~18!, can be used to
obtain a closed system of equations for the weak-beam
plitudes. For subsequent calculations it is convenient to w
this system in matrix form:

J] tCk5LCk1 (
k11k25k

h~Ck1
,Ck2

!

1 (
k11k21k35k

Q~Ck1
,Ck2

,Ck3
!, ~19!

where

Ck5~Fk ,F2k* ,Bk ,B2k* ,E2k0 ,k ,E22k0 ,k! ~20!

is a six-dimensional vector,

J5eg i zS 0

0

1
D ~21!
-

n

d

ld

-
te

is a diagonal 636 matrix, and0, 1 are respectively the zero
and unit 232 matrices. The linear operatorL has the form

L52Ni ]z2Kkd1
1

2

3S g 0 2g 0 2g 0

0 2g* 0 g* 0 g*

g* 0 2g* 0 0 g*

0 2g 0 g 2g 0

1 21 21 1 22 0

21 1 1 21 0 22

D , ~22!

where

N5S 1

1

0
D , K5S 2s3

s3

0
D

are diagonal 636 matrices, s3 is a Pauli matrix, kd

5k2/2k0n0 , and the timet has been made dimensionless
dividing it by the characteristic relaxation time of the fieldE
at the front face of the crystal:t/td(0)→t.

The quadratic nonlinearity in Eq.~19! is written in the
form of a vectorh that depends on the two argumentsCk1

andCk2
:

h~Ck1
,Ck2

!51
2

g

2
E2k0 ,k1

Bk2

g*

2
E22k0 ,k1

B2k2
*

g*

2
E22k0 ,k1

Fk2

2
g

2
E2k0 ,k1

F2k2
*

2
1

2
Fk1

F2k2
* 2

1

2
Bk1

B2k2
* 1Fk1

B2k2
* 2

1

2
E2k0 ,k1

~Fk2
1F2k2

* 1Bk2
1B2k2

* !

2
1

2
Fk1

F2k2
* 2

1

2
Bk1

B2k2
* 1Bk1

F2k2
* 2

1

2
E22k0 ,k1

~Fk2
1F2k2

* 1Bk2
1B2k2

* !

2 , ~23!
de-
on
in
ths
while the cubic nonlinearity vectorQ depends on three ar
guments:

Q~Ck1
,Ck2

,Ck3
!5S 0

0
0
0

2
1

2
E2k0 ,k1

~Fk2
F2k3

* 1Bk2
B2k3

* !

2
1

2
E22k0 ,k1

~Fk2
F2k3

* 1Bk2
B2k3

* !

D , ~24!

Equations~19! must be supplemented by boundary co
 -

ditions. In particular, at the back face of the crystal the si
band beamsBk acquire an additional phase due to reflecti
of the Fk beam from the feedback mirror. In order to obta
this phase shift, let us find the difference in the optical pa
of two parallel rays 1 and 2 incident at an angleu8 on the
back faceAC of the crystal~see Fig. 1!. The optical path
differenceD1,2 will then have the form

D1,25 l AB1 l BC2n0l CD1l/2,

where

l AB5 l BC5L/cosu, l CD52L tan u sin u8,
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sin u/sin u85n0 ,

L is the distance between the feedback mirror and the b
face of the crystal, andl is the wavelength of the light in
vacuum. Subtracting the path difference of the pump bea
2L1l/2 from the optical path differenceD1,2, we obtain the
required phase shiftf ~in the small-angle approximationu
!1!:

f52L~cosu21!k0.22kdn0L,

while the boundary conditions for the sideband waves h
the form

Fk~0!5F2k* ~0!50,

Bk~ l !5Fk~ l !exp~22ikdn0L !, ~25!

B2k* ~ l !5F2k* ~ l !exp~2ikdn0L !,

wherel is the length of the crystal along thez axis. Note that
the signs of the exponents in~25! are reversed compared t
Ref. 12. This discrepancy is obviously due to a typograph
error in Ref. 12, since subsequent expressions in this p
are correct.

Thus, the problem of describing the evolution of sid
band waves reduces to a boundary value problem for
system of equations~19! with boundary conditions~25!. A
characteristic feature of the photorefractive nonlinearity
the fact that the right side of Eq.~19!, and consequently the
stationary solutions of the boundary-value problem~19!,
~25!, are independent of the pump intensityI S . The pump
intensity determines only the overall normalization of t
optical intensities and the characteristic timetd for setting up
the stationary solutions.

3. LINEAR INSTABILITY THEORY

As a first step, let us study the evolution of sideba
waves in the linear approximation. The system~19! is linear-
ized by discarding the nonlinear~in Ck! termsh, Q. If we
assume that the time dependence ofCk has the formCk

}exp(nkt), we obtain a linear boundary value problem for t
complex eigenvaluesnk :

LCk5nkJCk . ~26!

Solution of this boundary value problem in the general c
presents considerable difficulty, because Eq.~26! is a system
of ordinary differential equations~in the coordinatez! with
nonconstant coefficients. The linear boundary value prob

FIG. 1. SegmentDA is perpendicular to the direction of propagation of ra
1 and2 within the photorefractive crystal.
ck
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can be solved in two special cases where the system red
to a system of ordinary differential equations with consta
coefficients. The first is the case where the coupling cons
g5g r is real ~a medium with a local photorefractive re
sponse!. Then uF0(z)u25uB0(z)u25const. This case was in
vestigated in Ref. 13 under the additional condition Renk

50, i.e., the instability threshold was found. However, t
coupling constant can be treated approximately as a
number only in photorefractive crystals like LiNbO3 and
LiTaO3, and no one has experimentally observed the form
tion of hexagons in these crystals to date. In the crys
KNbO3 and BaTiO3 discussed in this paper, the constant
unequivocally complex; in fact, we haveg. ig i ~indicating a
nonlocal photorefractive response!.10,15 In the second case
the coupling constantg is an arbitrary complex quantity, bu
it is assumed that the reflection coefficient from the feedb
mirror is exactly equal to 1, i.e.,R51 ~reflection from the
crystal faces is neglected as before!, and henceuF0(z)u2

5uB0(z)u2. It is also necessary to assume thatnk50. This
implies that the boundary value problem is solved at
instability threshold Renk50, and that this instability is ape
riodic, so that Imnk50, i.e., the frequency detuning betwee
pump beams and sideband beams vanishes. If it were
case that the detuning satisfied ImnkÞ0, a moving optical
pattern would be observed in the experiment. However,
experiments of Refs. 8 and 12 showed that the optical pat
is motionless; therefore, the assumption Imnk50 appears to
be fully justified. The boundary value problem withR51,
nk50 was solved in Ref. 12. In this case the system~26!
takes the form

S d

dz
1 ikdDFk52

ig

4
~Fk1F2k* 2Bk2B2k* !,

S d

dz
2 ikdDF2k* 5

ig*

4
~Fk1F2k* 2Bk2B2k* !,

S d

dz
2 ikdDBk52

ig*

4
~Fk1F2k* 2Bk2B2k* !,

~27!

S d

dz
1 ikdDB2k* 5

ig

4
~Fk1F2k* 2Bk2B2k* !,

E2k0 ,k5
1

2
~Fk2F2k* 2Bk1B2k* !,

E22k0 ,k52
1

2
~Fk2F2k* 2Bk1B2k* !,

where the space-charge field amplitudes were elimina
from the first four equations by using the last two equatio
of the system. The solution to the system~27! combined with
the boundary conditions~25! leads to the threshold conditio
for appearance of the instability, which exactly coincid
with the results of Ref. 12

cos~wl !cos~kdl !1
g i

2w
sin~wl !cos@kd~ l 12n0L !#
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FIG. 2. Threshold dependence ofg i l on kdl
for L50 ~a! andn0L/ l 54.44 ~b!.
e
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r

then
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r

1
g r12kd

2w
sin~wl !sin~kdl !2

g r

2w
sin~wl !

3sin@kd~ l 12n0L !#50, ~28!

wherew5Akd
21g rkd2g i

2/4. As we have already noted, th
coupling constant satisfiesg. ig i in the KNbO3 and BaTiO3

crystals to high accuracy, i.e., is pure imaginary. Therefo
in what follows we will setg5 ig i , and then obtain the
threshold functiong i(kdl ) from Eq. ~28! for each value of
the distance to the feedback mirrorL. This function consists
of a sequence of minima. Figure 2 shows special cases o
threshold curvesg i(kdl ) for L50 andn0L/ l 54.44; in the
second case, the dependence ofg i l on kdl is so steep tha
only those parts of the threshold curve near the minima co
,

he

ld

be plotted. The region of instability lies above the thresh
curve g i(kdl ). As L changes, the position of the minim
changes; however, the number of minima and their rela
spacings remain unchanged, which allows us to label them
order of increasingkdl as 1,2,3,•••, etc. In what follows a
positive integerm is used to label each minimum. Fo
n0L/ l ,1.43•••, the first minimumm51 is the deepest, while
as L increases the second minimum becomes deepest,
the third, etc., in succession. Figure 3 shows
L-dependence ofg i

minl and kd
minl corresponding to these

minima. There is only one set of values of the parameteL
for which g i

minl andkd
minl can be found analytically, namely

n0L/ l 523/212m, g i
minl 5p, kd

minl 5p/2, ~29!
ck

FIG. 3. Dependence ofg i

minl ~a! andkd
minl ~b!

on the dimensionless distance to the feedba
mirror n0L/ l .



n

un

ili
b
fi

fie
e

al

th
n

e
he

s
ju
u
el
on
um
em
le

or

0

ar
for
t
es

ee-

of
on

or

in

di-
int,

-
to
s a

n-
r

er-

ish,

a-
en-
In

621JETP 86 (3), March 1998 P. M. Lushnikov
It is clear from Fig. 3a that at these values ofL the minimum
valueg i

minl5p is reached as a function ofL. It is important
to note that forn0L/ l *23/212m the position of themth
minimum is given with high accuracy by the relation

kd~ l 12n0L !5~2m21!p ~30!

~which is an identity when Eq.~29! holds!. The limiting case
of this relation for 2n0L/ l @1, m51 has been seen i
experiments.8 Actually, condition ~30! implies that we are
choosing that phase shift in Eq.~25! between sideband
beams propagating in opposite directions along thez axis for
which these beams interact most efficiently. In order to
derstand the physical meaning of Eq.~30!, let us investigate
the dependence of the space-charge field amplitudeE2k0 ,k on
the z coordinate. From Eqs.~27! and ~25! we find

Fk1B2k* 5exp@2 ikd~z2 l !#@Fk~ l !

1exp~2ikdn0L !F2k* ~ l !#,
~31!

F2k* 1Bk5exp@ ikd~z2 l !#

3@exp~22ikdn0L !Fk~ l !1F2k* ~ l !#.

Then from Eq.~27! it follows that

E2k0 ,k5 i sin@kd~ l 2z1n0L !#@exp~2 ikdn0L !Fk~ l !

1exp~ ikdn0L !F2k* ~ l !#. ~32!

Physical considerations suggest that the lowest instab
threshold corresponds to the most effective interaction
tween sideband waves mediated by the space-charge
E2k0 ,k . According to Eq.~32!, the amplitude of this field is
sinusoidal, and thus on the average the magnitude of the
amplitude will be a maximum within the crystal when th
peak of the sinusoid is located at the center of the crystz
5 l /2, from which we obtainkd( l /21n0L)5(m21/2)p,
wherem is a whole number, which exactly coincides wi
Eq. ~30!. Numerical calculations actually confirm that whe
n0L/ l *23/212m holds the maximum of the amplitud
E2k0 ,k coincides to good accuracy with the center of t
crystal, and that for values ofkd away from the threshold
minimum kd5kd

min the maximum of this amplitude move
away from the crystal center. Nevertheless, the physical
tification presented above is somewhat qualitative, beca
in addition to the interaction of sideband beams via the fi
E2k0 ,k there is also a contribution associated with diffracti
of the sideband beams by the space-charge field of the p
beamsE2k0

, as is apparent from the linear part of the syst
Eq. ~19!. This contribution does not allow such a simp
interpretation; however, our success in explaining Eq.~30! is
reason to hope that the overall physical justification is c
rect.

Let us now allowg i to exceed threshold somewhat:
,h5(g i2g i

min)/gi
min!1, where g i

min corresponds to the
deepest minimum for a given value ofL. Near threshold the
instability growth rate can be written in the form

nk5n02~kd2kd
min!2f ,
-

ty
e-
eld

ld

s-
se
d

p

-

where n0 is the maximum instability growth rate,ukd

2kd
minu/kd

min!1, and f .0 is a constant. Because the line
boundary value problem cannot be solved analytically
nkÞ0, the values ofn0 and f remain unknown. However, i
will be clear from what follows that these values themselv
are not important for the existence of an explosive thr
wave instability. Furthermore, althoughn0 gives a correction
to the hexagon amplitudes, near threshold we haven0→0
and so this correction is negligibly small. Since the value
n0 is positive above threshold, in the linear approximati
the amplitudesFk andBk will grow exponentially with time
until the three-wave nonlinearity becomes important. F
small values of the ‘‘supercriticality’’h, the gain of the in-
stability is positive only within a narrow ringuku
.A2kd

mink0n0, so that when sideband waves are excited
this ring, the magnitudes of their transverse wave vectorsuku
can be treated as practically constant.

In addition to the threshold condition~28!, the linear
boundary value problem Eqs.~27! and~25! allows us to find
the six-dimensional eigenvector Eq.~20! ck

(0) of this prob-
lem at the instability threshold. The zero superscript in
cates that all quantities are calculated at the threshold po
and the lower case symbolck is used in place of the upper
case symbolCk to emphasize that the latter is a solution
the nonlinear boundary value problem, while the former i
solution to its linear portion only.

Let us briefly describe the procedure for findingck
(0) :

the general solution to the system of four ordinary differe
tial equations~27! can be written in the form of a sum of fou
independent solutions with arbitrary coefficientsc
5(c1 ,c2 ,c3 ,c4). The values of these coefficients are det
mined from boundary conditions~25!, which reduce to a
homogenous system of linear equations forc. The condition
that the system be solvable is that its determinant van
which leads to the threshold condition~28!, from which we
find a solutionc of the homogenous system of linear equ
tions defined up to an arbitrary factor. Therefore, the eig
vector ck

(0) is also determined up to an arbitrary factor.
particular, forn0L/ l 523/212m, g i

minl5p, kd
minl5p/2 we

obtain

ck
~0!

51
2 i expF2 i

p

2 S z

l
2

1

2D G1expS 3

4
ip DexpS pz

2l D
i expF i

2
pS z

l
2

1

2D G1expS 2
3

4
ip DexpS pz

2l D
i expF i

2
pS z

l
2

1

2D G1expS 1

4
ip DexpS pz

2l D
2 i expF2

i

2
pS z

l
2

1

2D G1expS 2
1

4
ip DexpS pz

2l D
2 i2 cosFp2 S z

l
2

1

2D G
i2 cosFp2 S z

l
2

1

2D G
2 .

~33!

For arbitrary values ofL the explicit form of this vector
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is very complicated and will not be given here. For ea
specific value of the parametersg i

minl, kd
minl, L the eigenvec-

tor ck
(0) was found using the program Mathematica 2.2.

In order to find the three- and four-wave interactions it
also necessary to solve a linear boundary value probl
which is the Hermitian conjugate of the linear portion of t
boundary value problem Eqs.~19! and ~25! with respect to
the scalar product

^c k
cuck&5E

0

l

dz~ck
c i!* ck

i . ~34!

Here repetition of the labeli implies summation from 1 to 6
and ck

c is an eigenvector of this Hermitian-conjugate pro
lem that satisfies the system of equations

L1c k
c50 ~35!

at the instability threshold. The operatorL1[(LT)* is the
Hermitian conjugate of~22!, and the following boundary
conditions are imposed on the components of the vectorck

c :

Bk
c~0!5B2k

c* ~0!50,

Bk
c~ l !52Fk

c~ l !exp~22ikdn0L !, ~36!

B2k
c* ~ l !52F2k

c* ~ l !exp~2ikdn0L !,

obtained by integrating the Hermitian operatorid/dz by
parts.

The solution of the Hermitian-conjugate boundary va
problem~35!, ~36! is analogous to the solution of the origin
boundary value problem~27!, ~25!, and the threshold condi
tion for the Hermitian-conjugate problem coincides with t
threshold condition~28! for the direct problem. The eigen
vector for the conjugate problem takes the following fo
whenn0L/ l 523/212m, g i

minl5p, kd
minl5p/2:

c k
c~0!51

expF2 i
p

2 S z

l
2

1

2D G1expS i
p

4
2

pz

2l D
expF i

p

2 S z

l
2

1

2D G1expS 2 i
p

4
2

pz

2l D
expF i

p

2 S z

l
2

1

2D G1expS i
3p

4
2

pz

2l D
expF2 i

p

2 S z

l
2

1

2D G1expS 2 i
3p

4
2

pz

2l D
ip expF2 i

p

2 S z

l
2

1

2D G
ip expF i

p

2 S z

l
2

1

2D G
2 .

~37!

4. THREE-WAVE INTERACTION OF SIDEBAND WAVES

The investigation of three- and four-wave interactio
given here will follow several ideas taken from Refs. 18 a
19, in which the generation of hexagonal cells was discus
at the surface of a liquid dielectric in an external electric fie
~Refs. 18! and under conditions of weakly supercritical co
vection ~Refs. 19!.
h

,

-

d
ed

Let us expand the general solutionCk of the nonlinear
boundary value problem~19!, ~25! within the ring uku
.A2kd

mink0n0 in eigenvectorsck,n of the linear boundary
value problem~27!, ~25!:

Ck5(
n

ck,nAk,n~ t !, A2k5Ak* , ~38!

where the lettern labels the eigenmode of the linear proble
for a given value of the wave vectork.

Substituting this expression into the nonlinear syst
~19! and taking the scalar product of the latter~as in Eq.
~34!! with the eigenvectorck

c of the conjugate linear problem
leads to the following equation, which is accurate up to q
dratic nonlinearities:

]Ak,n

]t
5nk,nAk,n1

1

2 (
n1 ,n2

(
k11k25k

Uk1 ,k2 ,k
n1 ,n2 ,nAk1 ,n1

Ak2 ,n2
,

~39!

whereUk1 ,k2 ,k
n1 ,n2 ,n is the matrix element of the three-wave in

teraction.
Since for small values of the supercritical paramete

,h5(g i2g i
min)/gi

min!1 sideband waves are excited only
the narrow ringuku.A2kd

mink0n0 corresponding to the mod
with maximum gain and labeln50, while the other modes
have negative gain, to find the matrix element we need o
calculate it at the instability thresholdkd5kd

min , g5 ig i
min ,

ck,n5ck
(0) , ck,n

c 5ck
c(0) for n50. Therefore, in what fol-

lows the labeln will be omitted. Furthermore, the conditio
k11k25k implies that only vectors that make angles ofp/3
with each other will participate in the three-wave interactio

As a result, we obtain from Eq.~19!

Uk1 ,k2 ,k[U52
^c k

cuh0&

^c k
cuJck&

, ~40!

whereJ and h are defined in Eqs.~21! and ~23!. The zero
label in h0 indicates that its arguments are evaluated at
instability threshold,h05h(ck

(0) ,ck
(0)), and Eq. ~39! re-

duces to Eq.~3!.
For each specific set of values of the parametersg i

minl,
kd

minl, L the matrix elementU was found using the program
Mathematica 2.2. In the first step, the eigenvectorsck

(0) ,
ck

c(0) were calculated for the direct and conjugate line
problems, and then the value ofU was obtained by integra
tion in Eq. ~40!. For the special casesn0L/ l 523/212m,
g i

minl5p, kd
minl5p/2 an analytic expression for the matr

element follows from Eqs.~33! and ~37!:

U52
2&

5

112ep

cosh~p/2!
. ~41!

Figure 4 shows how the matrix elementU for the three-wave
interaction at the instability threshold depends on the d
tanceL between the back face of the crystal and the feedb
mirror ~for the first minimumm51 of the threshold curve
g i

min(L)!, calculated from Eqs.~40! and~23!, where the func-
tions g i

min(L) andkd
min(L) are given in Fig. 3. In this case, i

was assumed that the coupling constantg is pure imaginary,
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which is true for KNbO3 and BaTiO3 to high accuracy. The
fact that U is a purely real quantity is very important fo
investigating the explosive instability.

5. FOUR-WAVE INTERACTION OF SIDEBAND WAVES

The explosive three-wave instability can be saturated
nonlinearities of fourth and higher orders. Those light bea
whose wave vectors lie in the narrow ring near the instabi
thresholduku.A2kd

mink0n0[k0' will be referred to as ‘‘fun-
damental’’ spatial harmonics. The quadratic nonlineariti
represented by the vectorh in the fundamental system o
equations~19! and written out in Eq.~23!, give rise to all
possible sum and difference harmonics arising from
three-wave interactionk5k11k2 , uk1,2u5k0' .

Equations for the harmonicsk5k11k2 , uk1,2u5k0' fol-
low from Eqs.~19! and~25!, wherekd5k2/2k0n0 . The sum-
mation in the quadratic nonlinearities runs over fundame
harmonics at the instability thresholdck5ck

(0) , and time
derivatives and cubic nonlinearities are neglected beca
the corrections they produce are of higher order~fifth order
and higher!. Thus, when the amplitudes of the fundamen
harmonics are specified the boundary-value problem
combination harmonics reduces to the solution of a lin
system of ordinary differential equations with constant co
ficients and an inhomogeneous part determined by the
plitudes of the fundamental harmonics. The boundary con
tions for this system are, as before, given by Eqs.~25!.
Solution of this system presents no fundamental difficulti
however, explicit expressions for the combination harmon
are not given here because they are extremely involved.
important to note that these harmonics are second orde
the amplitudes of the sideband waves, and therefore
contribute to the four-wave processes via the interaction w
the fundamental harmonics. Furthermore, the four-wave
teraction contains a contribution from the intrinsic proce

FIG. 4. Dependence of the three-wave interaction matrix elementU on
n0L/ l .
y
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2→2 due to interaction of the fundamental spatial harmon
that arise from the cubic nonlinearities in the fifth and six
equations of the system~19!.

Thus, the general solutionCk
tot of the nonlinear bound-

ary value problem~19!, ~25! can be cast in the form

Ck
tot5Ck1dCk , ~42!

whereCk is an expansion of~38! in fundamental harmonics
and

dCk5 (
k11k25k

Ak1
Ak2

dCk

is an expansion in combination harmonics. The vectorsk1

andk2 lie at the instability thresholduk1u5uk2u5k0' .
Substituting Eqs.~42! and~43! into the nonlinear system

~19! and taking the scalar product of this system according
~34! with the vectorck

c of the conjugate linear problem~27!
leads to the following equation, which is accurate to with
cubic nonlinearities:

]Ak

]t
5nkAk1

U

2 (
k11k25k

Ak1
Ak2

2 (
k11k21k35k

3$@2^c k
c~0!uh~ck1

~0! ,dCk21k3
!2h~dCk21k3

,ck1

~0!!&

2^c k
c~0!uQ~ck1

~0! ,ck2

~0! ,ck3

~0!!&#/^c k
c~0!uJck

~0!&%

3Ak1
Ak2

Ak3
, ~43!

whereJ, h are defined in Eqs.~21! and ~23!, and the sum-
mation runs over fundamental harmonics. Thus, we ob
Eq. ~3!. The matrix element of the four-wave interactio
T2kk1k2k3

is found by symmetrizing the expression in cur
brackets in Eq.~43!. The matrix elementT2kk1k2k3

depends
only on the angles between the vectorsk, k1 , k2 , k3 ; there-
fore we will denote this matrix element byTf , wheref is
the angle between the vectorsk1 andk2 .

In the special case where only six fundamental harm
ics are excited with wave vectorsk1 , k2 , k3 , k4 , k5 , k6 ,
forming a hexagon~Fig. 5!, we obtain three types of combi
nation harmonics: zero-orderuku.0, second-order uku
.2k0' , and ‘‘root-three’’-orderuku.)k0' . These combi-
nation harmonics are generated by the interaction of pair
fundamental harmonics at anglesp, 0, andp/3, respectively.
In Fig. 5 the second order harmonics are indicated by do
lines, and the) harmonics are indicated by dashed line
The zero-order harmonic renormalizes the pump bea
while the second-order and) harmonics form the vertices
and centers of the faces of secondary hexagons, respecti
This is clear both from Fig. 5 and the experiments~see, e.g.,
Fig. 2 in Ref. 8!. The interaction via second-order harmoni
contributes to the matrix elementT0 , while interaction via
) harmonics contributes toTp/3 ; interaction via zero-order
harmonics contributes to bothT0 and Tp/3 . The process 2
→2 also contributes to bothT0 andTp/3 .

Let us denote the amplitudes of the six fundamental h
monicsk1 , k2 , k3 , k4 , k5 , k6 by A1 , A2 , A3 , A4 , A5 , A6 .
According to Eq.~38!, only three amplitudes are indepen
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dent: A45A1* , A55A2* , A65A3* , becausek452k1 , k5

52k2 , k652k3 . Then Eq,~3! can be rewritten in the form

]A1

]t
5n0A11UA3* A5* 2FT0

2
uA1u21Tp/3~ uA3u2

1uA5u2!GA1 ,

]A3

]t
5n0A31UA1* A5* 2FT0

2
uA3u21Tp/3~ uA1u2

1uA5u2!GA3 , ~44!

]A5

]t
5n0A51UA1* A3* 2FT0

2
uA5u21Tp/3~ uA1u2

1uA3u2!GA5 .

Thus, the original boundary value problem~19!, ~25!
reduces to a system of three amplitude equations.

The Mathematica 2.2 program was used to find the m
trix elementsT0 , Tp/3 for each specific value of the param
etersg i

minl, kd
minl, L, just as in the previous section where t

three-wave interaction was discussed. Figure 6 shows
dependence of these matrix elements on the distanceL be-
tween the back face of the crystal and the feedback mi
~for the first minimumm51 of the threshold curveg i

min(L)!,
calculated according to Eqs.~23! and ~43!, whereg i

min(L),
kd

min(L) are given in Fig. 3. Just as forU, all of these matrix
elements are found to be purely real quantities.

6. HEXAGON FORMATION DYNAMICS AND STABILITY

In the previous section, the problem of describing t
evolution of hexagons was reduced to solution of the sys
~44! of three ordinary differential equations. When cub
nonlinearities are neglected, this system leads to an explo

FIG. 5. The six vectors denoted by solid lines represent the fundame
harmonics. The ends of these vectors form the fundamental hexagon
dotted lines denote the second-order harmonics, while the dashed line
) harmonics. The second-order harmonics form the vertices of secon
hexagons, while the) harmonics are at the centers of their faces.
-

he
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e
m
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instability. For equal and real amplitudesA15A35A5

5ReA1, we obtain~1! as a special case, whose correspon
ing solution ~2! goes to infinity at finite time. In genera
solutions to the system~44! ~without cubic nonlinearities!
can be expressed in terms of elliptic functions, and for ar
trary initial conditions~except for a set of measure zer!
these solutions also exhibit singularities at finite times. It c
be shown that in this limit the relative deviations (uA1u2

2uA2u2)/uA1u2, (uA2u22uA3u2)/uA2u2 go to zero, the total
phaseF5Arg A11Arg A31Arg A5 goes topn, wheren is
an integer, and each of the phases individually goes t
certain constant. Therefore, at later stages of evolution
system~44! reduces to the following equation for the inte
sity I 25uA1u25uA2u25uA3u2:

1

2

]I

]t
5n0I 1UI 3/22S T0

2
12Tp/3D I 2, ~45!

whose solution can be directly compared with experiment
small supercritical parameters whenn0→0.

Thus, the formation of hexagons admits the followin
physical picture. Due to fluctuations in the medium at tim
t50, the amplitudeA1 is found to be nonzero for a certai
value of wave vectork lying in the ring uku.A2kd

mink0n0.
The linear instability leads to an increase inuA1u until the
nonlinear terms in Eq.~44! become important, as a result o
which the amplitudesA1 , A3 , A5 all begin to grow explo-
sively at the same time, i.e., sideband waves are found to
excited with wave vectorsk1 , k2 , k3 , k4 , k5 , k6 forming a
hexagon~see Fig. 5!. The explosive growth of these ampl
tudes due to the three-wave interaction will continue until
four-wave nonlinearity comes into play. If in this case
turns out that the system parametersg i

minl, kd
minl, n0L/ l are

such that the total matrix elementT0/212Tp/3 is positive,
then the four-wave nonlinearity can stabilize the instabili
otherwise, the growth in intensity of the sideband waves c

tal
he
are
ry

FIG. 6. Dependence of the matrix elementsT0 , Tp/3 for four-wave interac-
tions onn0L/ l ; the solid curve isT0 , the dashed curveTp/3 .
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tinues and stabilization is achieved only via nonlinearities
higher order. In what follows, we will discuss the stability
stationary hexagonal solutions.

In experiment it has been well established6,8 that initially
two sideband waves are actually excited, with opposite si
of the transverse wave vectors. This exactly correspond
the initial growth of amplitudeA1 for the ck eigenmode Eq.
~38!, since this mode consists of sideband waves with tra
verse wave vectors6k ~20!. Then a rapid growth of hexa
gons is observed, and the intensities of all sideband wa
are comparable.8 In Ref. 8 the time dependence of the inte
sities of the sideband waves was measured. It is clear f
Fig. 3 of Ref. 8 that after a short initial stage of exponen
growth, the intensity follows a power-law increase that
characteristic of explosive nonlinearity, after which it is s
bilized by higher-order nonlinearities. Evidence of this sta
lization is the formation of secondary hexagons with lo
intensity~see Fig. 2 in Ref. 8! generated by second-order an
) harmonics.

The stationary~hexagon! solution to Eq.~44! has the
form

A05
U

4Tp/31T0

1sign UA 2n0

4Tp/31T0
1S U

4Tp/31T0
D 2

, ~46!

whereA05A15A25A3 . This solution is characterized by
‘‘hard’’ excitation regime, with an amplitude discontinuity a
threshold~for n050! given by

A05
2U

4Tp/31T0
.

The procedure for investigating the internal stability
the stationary solution~46! was analogous to that used
Ref. 19. This solution is stable when

2
1

2

U2

T014Tp/3
,n0,4

T01Tp/3

~2Tp/32T0!2 U2. ~47!

This result, when evaluated near the instability thresh
wheren0→0, implies thatT01Tp/3.0. Figure 7 shows the
dependence of the hexagon intensityI 5A0

2 on n0L/ l in that
range of the parameterL where the stability condition~47!
holds. Outside this range, explosive growth of the hexag
can be stabilized only by higher-order wave processes.

7. NUMERICAL EXPERIMENT

A numerical experiment was performed in order
verify the results of the analytic theory for hexagon gene
tion described above. The goal of this experiment was
investigate the region of large values ofn0L/ l *0.1, where
saturation of the explosive instability is provided by highe
order wave processes~five-wave and higher!. In the experi-
ment the boundary value problem~19!, ~25! was solved nu-
merically, taking into account a larger number of sum a
difference harmonics than in the previous section. In orde
estimate the number of higher-order harmonics required,
accordingly the order of the wave processes that mus
f

s
to

s-

es

m
l

-
-

d

s

-
o

-

d
to
nd
e

included in order to definitely ensure saturation of the exp
sive instability, the following integral of the boundary valu
problem~19!, ~25! was used:

H5(
k

~ uFku22uBku2!1@Fk1Fk* 2Bk2Bk* #U
k50

50,

~48!

where the summation runs over all harmonics. The vanish
of this integral for allz at all timest physically expresses
conservation of the energy of the optical field, since the d
sipation of optical energy, which is small in a photorefracti
crystal, has nowhere been taken into account in deriving
system~19!, ~25!. In particular, atz50 ~i.e., at the front face
of the crystal! the conditionH50 implies that the optical
power of the pump beam incident on the crystal equals
total optical power of the beams that exit the crystal by
back face~recall that we have neglected reflection from t
boundary and have set the reflection coefficient of the fe
back mirror equal to unity!. According to the boundary con
dition ~25!, we haveFkuz5050 for all k; therefore it follows
from Eq. ~48! that when sideband waves form the pump
depleted, which is expressed in the growth of the zero-or
harmonics Fkuk50 , Bkuk50 which renormalize the pump
beams. Thus, in the strongly nonlinear theory we must a
minimum take into account all processes in which zero h
monics interact with each other. It is not difficult to see th
such processes give contributions up to eighth order in
equation for the fundamental harmonic. Therefore, in the
merical experiment all processes up to eight-wave inc
sively were taken into account. In this case, it is necessar
include along with the harmonics 0, 1, 2,) listed above the
harmonicsA7, 3, A12, A13, 4 as well.~The ends of the

FIG. 7. IntensityI of the fundamental hexagon at the front face of t
photorefractive crystalz50 as a function ofn0L/ l , which follows from the
theory of four-wave interactions in the region where this theory is ap
cable. The intensity of the hexagon is normalized by the intensity of
pump at the front face of the crystal.
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wave vectors of harmonics 3,A12, 4 form the vertices of
hexagons, while the ends of the wave vectors of harmo
A7, A13 form regular dodecagons!.

At each timet the boundary value problem~19!, ~25!
was solved by Newton’s method. At each step of t
method, values of the amplitudeBkuz50 were specified at the
front face of the crystal for all the harmonics. Then the a
plitudesFkuz5 l , Bkuz5 l at the back face of the crystal wer
found by integrating the first four ordinary differential equ
tions of the system~19! using the fourth-order Runge-Kutt
method in the coordinatez. The error used in Newton’s
method was given by the accuracy with which the bound
condition ~25! was satisfied at the back face of the cryst
The time dependence was determined by integrating
space charge field amplitudesE62k0 ,k using a predictor-
corrector method~the fifth and sixth equations of the syste
~19!!.

The results of the numerical experiment are shown
Fig. 8 in the form of plots of the intensities of the fundame
tal harmonic and) harmonic versus the distance to th
feedback mirror for 0<n0L/ l<0.85. In the region 0
<n0L/ l &0.1, the intensity of the fundamental harmonic h
a minimum, which is in agreement with the results of t
analytic theory according to which fourth-order proces
can saturate the explosive growth of the hexagon instab
only in this region. However, in this case the analyticalBk

an

and numericalBk
num values of the light-beam amplitudes di

fer rather strongly:uBk
numu/uBk

anuuz50;2, which indicates a
strong renormalization of the amplitudes of the hexagons
to higher-order wave processes. Thus, the predictions of
four-wave theory are valid more qualitatively than quanti
tively. For n0L/ l *0.1, when the four-wave interaction
surely cannot ensure saturation of the explosive instabi
the nonlinearity increases with increasingn0L/ l .

Additional numerical investigations showed that, sin

FIG. 8. Dependence of the intensity of the fundamental hexagonI ~solid
curve! and intensity of the) harmonic~I

)

is dashed! on n0L/ l obtained
from the numerical experiment. The normalization of the intensity is
same as in Fig. 7.
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the amplitudes of the higher-order harmonics rapidly de
as their labels increase, if we assume by definition that all
higher-order combination harmonics equal zero but take
account all possible processes between the 0, 1, 2,) har-
monics, the amplitude of the fundamental harmonic chan
by more than 2%. Thus, for the strongly nonlinear theory
actually turns out to be sufficient to take into account wa
processes up to eighth order, while including in those p
cesses only interactions with the participation of harmon
0, 1, 2,). Note also that only harmonics 0, 1, 2,) are
observed in experiment, while the higher harmonics are
weak to be recorded~see, e.g., Refs. 6 and 8!. In these ex-
periments the intensity of hexagons is observed to be fr
one to three percent of the intensity of the pump, which
somewhat lower than the results obtained from the numer
experiment, which gives a valueuBk(0)u2.0.04. This is
probably explained by the fact that losses due to reflectio
the crystal faces~of order 15% for light incident on the bac
face of the crystal and just as much again when the li
reenters the crystal after reflection from the feedback mirr!
have not been included in the system~19!, ~25!, and losses in
the reflection of light from the feedback mirror have al
been neglected.

We mention in conclusion that forn0L/ l *0.85 station-
ary hexagon solutions turn out to be unstable against
pumping of energy back into the) harmonic. This instabil-
ity is connected with the fact already noted in Sec. 3 that
n0L/ l .1.43 the depths of the first and second minima of
threshold curveg i

min(kdl) for the linear instability are compa
rable ~see Fig. 3a!. In this case the ratiokd

minum52 /kd
minum51 is

close to 3~accurate to 2%!. Thus, in the neighborhood o
n0L/ l;1.43 the amplitudes of the first-order and) harmon-
ics are the same order, and hence they are coupled by
three-wave interaction. This case requires the inclusion o
wave processes up to eight-wave in the numerical calc
tions, and thus the treatment of a larger number of harmo
than were included in the numerical experiment describ
above. Consideration of this problem lies outside the fram
work of this paper.

8. CONCLUSION

Thus, the following results have been obtained in t
paper. A system of equations~19! has been derived with
boundary conditions~25! that describes the evolution of th
sideband wave amplitudes and space-charge field for an
bitrary level of nonlinearity. Linearization of this system
leads to the threshold condition~28! for appearance of a
transverse instability, which exactly coincides with the r
sults of Ref. 12. It has been shown that the threshold cu
g i(kdl ) consists of a sequence of minima whose relat
depth changes with the parametern0L/ l , which is propor-
tional to the distanceL to the feedback mirror. Forn0L/ l
,1.43 the deepest minimum~i.e., corresponding to the low
est instability threshold! turns out to be the first, and as th
quantity n0L/ l increases the second, third, etc., minima b
come the deepest in succession. Expression~30! was ob-
tained, which describes with high accuracy the position of
the minima. In this case the magnitudes of the transve

e
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wave vectors belong to the set 1,), A5,... for thefirst,
second, third, etc. minima. Moreover, a set of explicit so
tions ~29! has been found for the threshold Eq.~28! which
correspond to the deepest values of the minima for all p
sible values of the parametern0L/ l . Eigenvectors were cal
culated for the direct linear boundary value problem~25!,
~26! and its Hermitian conjugate~36!, ~35! at the instability
threshold as functions ofn0L/ l . For the special cases~29!
explicit analytic expressions~33!, ~37! were given for these
vectors.

For small values of the supercritical parameterh, when
the sideband beams are unstable only within a narrow
uku.A2kd

mink0n0, the general solution to the nonlinea
boundary value problem~19!, ~25! was reduced~by expand-
ing ~38! in eigenfunctions of the linear problem! to the sys-
tem of amplitude equations~3!. This system consists of
Landau expansion in the amplitude of the growing line
modes. The matrix elementsU and Tkk1k2k3

for three- and
four-wave interactions respectively were calculated at the
stability threshold as functions ofn0L/ l . These matrix ele-
ments turn out to be purely real quantities. In the special c
~29! the explicit analytic expression~41! was obtained forU.
The fact that the matrix elementU for the three-wave inter-
action differs from zero is of fundamental importance, sin
it leads to the appearance of the explosive three-wave in
bility and correlation of sideband waves whose wave-vec
make angles with one another that are multiples ofp/3.

The possibility of stabilization of explosive growth o
the hexagons due to four-wave interactions was investiga
Eqs. ~44! were obtained to describe the temporal dynam
of generation of the steady-state hexagonal solutions~46!,
and the stability condition~47! for these solutions was found
As a result it was shown that forn0L/ l &0.1 four-wave in-
teractions can saturate the explosive instability. Outside
region it is definitely necessary to take into account high
order wave processes. A numerical experiment was
formed to investigate the nonlinear boundary value prob
~19!, ~25!. It was shown that in general it is necessary to ta
into account all wave processes up to eight-wave. Howe
among these processes the only important ones were int
tions between the fundamental harmonic and harmonic
), and 2. Forn0L/ l &0.1 the results obtained agreed qua
titatively with the results of the four-wave interaction theor
however, it was found that higher-order wave processes
to a substantial renormalization of the hexagon amplitu
given by the analytic expression~46!. It was shown that for
n0L/ l *0.85 the strongly nonlinear stationary hexagonal
lutions ~obtained in the numerical experiment! become un-
stable against repumping of energy into higher harmon
The reason for this is that in this region the fundamen
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harmonic and) harmonic are of the same order due to t
closeness of their linear instability thresholds. In this case
transverse wave vectors of these two harmonics corresp
to positions of two successive minima of the threshold cu
g i(kdl ), which leads to an intense exchange of energy
tween them.
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